

Use of Compost in Remediation of Metal Polluted Soil

Susan Tandy, Mark Nason and Julie Williamson

Research Objectives

Following on from the previous work we wanted to;

 Look at transformation of metals whilst composting using different feedstocks

 Investigate whether compost could be used to remediate metal polluted soil

Step 1: Composting

- Produce compost from a mixture of greenwaste, sewage sludge and paper deinking sludge
- Co-compost soil from a highly polluted mine site with the same feedstocks
- Follow the transformation of metals during composting in both treatments

Experimental Setup

 Feedstocks mixed in the ratio GW:SS:PF 35:30:35 on dry weight basis

 For composting the contaminated soil the feedstocks were mixed in the same ratio but then mixed 50:50 with the soil on dry basis

Location of Parys Mountain Mine

Contaminated Soil

- Taken from waste piles from calcining process (oxidation)
- Not much vegetation on material
- Sieved to 1cm

Cu 3234 mg kg⁻¹
Zn 213 mg kg⁻¹
As 101 mg kg⁻¹
Pb 10700 mg kg⁻¹

Composting Process

- Composting carried out in 1m³ bags
- Turned every 2 weeks for first 2.5 months then every month for 4 months
- Temperature recorded and samples taken.
- Total metals and sequential extraction of metals carried out as well as standard analysis of compost (nutrients, organic matter)

Sequential Extraction Procedure

Zeien & Brummer

Fr	ac	ti	on

F1 Mobile

F2 Easily Available

F3 Occluded in Mn-oxides

F4 Organic bound

F5 Occluded in amorphous

Fe-oxides

F6 Occluded in crystalline

Fe-oxides

Residue

Extraction Agent

1M NH₄NO₃

1M NH₄OAc. (pH 6)

0.1M NH₂OH-HCI + 1M

 $NH_4OAc.$ (pH 5.5)

0.025M NH₄EDTA (pH 4.6)

0.2M NH₄**Oxalate** (pH 3.25)

0.1M Ascorbic acid in

0.2M NH₄Oxalate pH 3.25

HNO₃ Digestion

Bags weighed

Bags cut so compost falls out

Compost mixed and put in a new bag

Total Metals at Time 0

	Cr	Ni	Cu	Zn	As	Cd	Pb
	mg kg ⁻¹	mg kg⁻¹	mg kg ⁻¹				
Greenwaste	25	23	43	59	7.0	3.4	56
Paper fibre	27	21	257	32	3.1	3.1	17
Sewage Sludge	49	31	336	377	4.3	2.9	257
Soil	15	5.7	3234	214	101	3.8	10673
Compost	41	30	250	174	6.0	3.7	114
Compost +Soil	18	12	1962	188	185	3.5	5721

Sequential Fractionation of Copper at Time 0

Sequential Fractionation of Lead at Time 0

Step 2: Greenhouse Experiment

- Question: Are metals bound more strongly when polluted soil is co-composted or when it is mixed with compost afterwards
- Question: Does compost reduce available metals more than just by dilution
- Trial: Pot experiment using acid tolerant wheat

Treatments and Analysis

Treatments:

- -Soil + Compost
- Co-composted soil
- Diluted soil (polystyrene balls)

Analysis:

- Pore water metals
- –Plant metals (shoots)
- Plant biomass

Pre-Trial: 1 week growth

Greenhouse Trial Setup

- Mixed compost with same amount of soil as co-composted soil treatment
- Diluted soil with polystyrene balls to same extent as for compost
- Placed in 7.5L pots with pore water samplers
- Left for 1 month

Next Step

- Take samples of each treatment for sequential extraction
- Plant acid tolerant wheat
- Extract pore water at start, middle and end of experiment
- At end of experiment measure wheat shoot biomass and wheat metal content